

India's Most Comprehensive & the Most Relevant Test Series designed according to the latest pattern of exams!

JEE MAIN

JEE ADV.

WBJEE

MHT CET

and many more...

Click here to join Test Series for 2022

It's time for you to crack upcoming IIT JEE Main & Advanced and other competitive exams with India's Most Trusted Online Test Series. Many questions at JEE Main 2021 were same/similar to the ones asked in our test series. That's the power of our test series!

Trusted by thousands of students & their parents across the nation

Our result in JEE Main 2021

150+

Got 99+ percentile (overall)

301

Got **99+ percentile** in one or more subjects

85%

Improved their score by **25 percentile**

89%

Felt **overall confident** after the test series

Click here to join Test Series for 2022

FREE Question Bank & Previous Year Questions for

JEE MAIN

JEE ADV.

BITSAT W

WBJEE MHT CET

and many more...

Why download MARKS?

- Chapter-wise PYQ of JEE Main, JEE Advanced, NEET, AIIMS, BITSAT, WBJEE, MHT CET etc.
- Chapter-wise NTA Abhyas questions
- Taily practice challenge and goal completion
- Bookmark important questions and add them to your notebooks
- Create unlimited Custom Tests

And all this for FREE. Yes, FREE! So what are you waiting for, download MARKS now.

4.8

Rating on Google Play

30,000+

Students using daily

1,00,000+

Questions available

Continuity

1. DEFINITION

If the graph of a function has no break or jump, then it is said to be continuous function. A function which is not continuous is called a discontinuous function.

2. CONTINUITY OF A FUNCTION AT A POINT

A Function f(x) is said to be continuous at some point x=a of its domain if

$$\lim_{x\to a} f(x) = f(a)$$

i.e., If
$$\lim_{x\to a-0} f(x) = \lim_{x\to a+0} f(x) = f(a)$$

i.e., If
$$f(a-0) = f(a+0) = f(a)$$

i.e., If $\{LHL \text{ at } x=a\} = \{RHL \text{ at } x=a\} = \{\text{ value of the function at } x=a\}$.

3. CONTINUITY FROM LEFT AND RIGHT

Function f(x) is said to be

- (i) Left Continuous at x=a if $\lim_{x\to a-0} f(x) = f(a)$ i.e . f(a-0) = f(a)
- (ii) Right Continuous at x=a if $\lim_{x\to a+0} f(x) = f(a)$ i.e. f(a+0) = f(a)

Thus a function f(x) is continuous at a point x=a if it is left continuous as well as right continuous at x=a.

4. CONTINUITY IN AN INTERVAL

- (1) A function f(x) is continuous in an open interval (a, b) if it is continuous at every point of the interval.
- (2) A function f(x) is continuous in a closed interval [a, b] if it is
 - (i) continuous in (a, b)
 - (ii) right continuous at x=a
 - (iii) left continuous at x=b

5. CONTINUOUS FUNCTIONS

A function is said to be continuous function if it is continuous at every point in its domain. Following are examples of some continuous functions:

(i) f(x) = x

(Identify function)

(ii) f(x) = c

- (Constant function)
- (iii) $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a^n$
- (Polynomial function)

(iv) $f(x) = \sin x, \cos x$

(Trigonometric function)

(v) $f(x) = a^x, e^x, e^{-x}$

(Expoential function)

(vi) $f(x) = \log x$

(Logarithmic function)

- (vii) $f(x) = \sinh x, \cosh x, \tanh x$
- (Hyperbolic function)
- (viii) f(x) = |x|, x + |x|, x |x|, x |x|
- (Absolute value functions)

6. DISCONTINUOUS FUNCTIONS

A function is said to be a discontinuous function if it is discontinuous at atleast one point in its domain. Following are examples of some discontinuous functions:

No.	Functions	Points of discontinuity
(i)	[x]	Every Integers
(ii)	x-[x]	Every Integers
(iii)	$\frac{1}{x}$	$\mathbf{x} = 0$
(iv)	tanx, secx	$x=\pm \frac{\pi}{2},\pm \frac{3\pi}{2},\ldots$
(v)	cotx, cosecx	$x=0$, $\pm~\pi$, $\pm~2\pi$,
(vi)	$\sin \frac{1}{x}$, $\cos \frac{1}{x}$	$\mathbf{x} = 0$
(vii)	e ^{1/x}	x = 0
(viii)	coth x, cosechx	x = 0

7. PROPERTIES OF CONTINUOUS FUNCTIONS

The sum, difference, product, quotient (if $D_{\Gamma} \neq 0$) and composite of two continuous functions are always continuous functions. Thus if f(x) and g(x) are continuous functions then following are also continuous functions:

(i) f(x)+g(x)

(ii) f(x)-g(x)

(iii) f(x).g(x)

(iv) $\lambda f(x)$, where λ is a constant

(v) $\frac{f(x)}{g(x)}$, if $g(x) \neq 0$

(vi) f[g(x)]

8. IMPORTANT POINT

The discontinuity of a function f(x) at x = a can arise in two ways

- (i) If $\lim_{x\to a^-} f(x)$ exist but $\neq f(a)$ or $\lim_{x\to a^+} f(x)$ exist but $\neq f(a)$, then the function f(x) is said to have a removable discontinuty.
- (ii) The function f(x) is said to have an unremovable discontinuity when $\lim_{x\to a} f(x)$ does not exist.

i.e.
$$\lim_{x\to a^{-}} f(x) \neq \lim_{x\to a^{+}} f(x)$$

Differentiability at a point

Let f(x) be a ral valued function defined on an open interval (a, b) and let $c \in (a, b)$. Then f(x) is said to be

Continuity [3]

differentiable or derivable at x = c, iff $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists finitely.

This limit is called the derivative or differential coefficient of the function f(x) at x = c, and is denoted by f'(c) or

$$Df(c) \text{ or } \left\{ \frac{d}{dx} f(x) \right\}_{x=c}$$

$$\lim_{x \to c^{-}} \frac{f(x) - f(c)}{-h} = \lim_{h \to 0} \frac{f(c+h) - f(c)}{-h}$$

is called the left hand derivative of f(x) at x = c and is denoted by $f'(c^-)$ or Lf'(c) while.

$$\lim_{x\to c^+} \frac{f(x)-f(c)}{x-c} \operatorname{or} \lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$$

is called the right hand derivative of f(x) at x = c and is denoted by $f'(c^+)$ or Rf'(c).

Thus, f(x) is differentiable at $x = c \iff Lf'(c) = Rf'(c)$.

If Lf'(c) \neq Rf'(c) we say that f(x) is not differentiable at x = c.

Differentiability in a set

A fuction f(x) defined on an open interval (a, b) is said tobe differentiable or derivable inopen interval (a, b) if it is differentiable at each point of (a, b)